Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Crit Care ; 25(1): 424, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1577182

ABSTRACT

The preferential use of the oral/enteral route in critically ill patients over gut rest is uniformly recommended and applied. This article provides practical guidance on enteral nutrition in compliance with recent American and European guidelines. Low-dose enteral nutrition can be safely started within 48 h after admission, even during treatment with small or moderate doses of vasopressor agents. A percutaneous access should be used when enteral nutrition is anticipated for ≥ 4 weeks. Energy delivery should not be calculated to match energy expenditure before day 4-7, and the use of energy-dense formulas can be restricted to cases of inability to tolerate full-volume isocaloric enteral nutrition or to patients who require fluid restriction. Low-dose protein (max 0.8 g/kg/day) can be provided during the early phase of critical illness, while a protein target of > 1.2 g/kg/day could be considered during the rehabilitation phase. The occurrence of refeeding syndrome should be assessed by daily measurement of plasma phosphate, and a phosphate drop of 30% should be managed by reduction of enteral feeding rate and high-dose thiamine. Vomiting and increased gastric residual volume may indicate gastric intolerance, while sudden abdominal pain, distension, gastrointestinal paralysis, or rising abdominal pressure may indicate lower gastrointestinal intolerance.


Subject(s)
Enteral Nutrition , Intensive Care Units , Critical Illness , Food, Formulated , Humans , Residual Volume
2.
BMC Pulm Med ; 21(1): 241, 2021 Jul 17.
Article in English | MEDLINE | ID: covidwho-1369491

ABSTRACT

INTRODUCTION: The novel coronavirus SARS-Cov-2 can infect the respiratory tract causing a spectrum of disease varying from mild to fatal pneumonia, and known as COVID-19. Ongoing clinical research is assessing the potential for long-term respiratory sequelae in these patients. We assessed the respiratory function in a cohort of patients after recovering from SARS-Cov-2 infection, stratified according to PaO2/FiO2 (p/F) values. METHOD: Approximately one month after hospital discharge, 86 COVID-19 patients underwent physical examination, arterial blood gas (ABG) analysis, pulmonary function tests (PFTs), and six-minute walk test (6MWT). Patients were also asked to quantify the severity of dyspnoea and cough before, during, and after hospitalization using a visual analogic scale (VAS). Seventy-six subjects with ABG during hospitalization were stratified in three groups according to their worst p/F values: above 300 (n = 38), between 200 and 300 (n = 30) and below 200 (n = 20). RESULTS: On PFTs, lung volumes were overall preserved yet, mean percent predicted residual volume was slightly reduced (74.8 ± 18.1%). Percent predicted diffusing capacity for carbon monoxide (DLCO) was also mildly reduced (77.2 ± 16.5%). Patients reported residual breathlessness at the time of the visit (VAS 19.8, p < 0.001). Patients with p/F below 200 during hospitalization had lower percent predicted forced vital capacity (p = 0.005), lower percent predicted total lung capacity (p = 0.012), lower DLCO (p < 0.001) and shorter 6MWT distance (p = 0.004) than patients with higher p/F. CONCLUSION: Approximately one month after hospital discharge, patients with COVID-19 can have residual respiratory impairment, including lower exercise tolerance. The extent of this impairment seems to correlate with the severity of respiratory failure during hospitalization.


Subject(s)
COVID-19/physiopathology , Pneumonia, Viral/physiopathology , Aged , Blood Gas Analysis , COVID-19/complications , Carbon Monoxide , Dyspnea/virology , Exercise Tolerance , Female , Humans , Male , Middle Aged , Oxygen/blood , Partial Pressure , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Pulmonary Diffusing Capacity , Residual Volume , SARS-CoV-2 , Severity of Illness Index , Walk Test
3.
J Thorac Imaging ; 36(2): 65-72, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-1138033

ABSTRACT

RATIONALE AND OBJECTIVES: To assess the effect of computed tomography (CT)-based residual lung volume (RLV) on mortality of patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: A single-center, retrospective study of a prospectively maintained database was performed. In total, 138 patients with COVID-19 were enrolled. Baseline chest CT scan was performed in all patients. CT-based automated and semi-automated lung segmentation was performed using the Alma Medical workstation to calculate normal lung volume, lung opacities volume, total lung volume, and RLV. The primary end point of the study was mortality. Univariate and multivariate analyses were performed to determine independent predictors of mortality. RESULTS: Overall, 84 men (61%) and 54 women (39%) with a mean age of 47.3 years (±14.3 y) were included in the study. Overall mortality rate was 21% (29 patients) at a median time of 7 days (interquartile range, 4 to 11 d). Univariate analysis demonstrated that age, hypertension, and diabetes were associated with death (P<0.01). Similarly, patients who died had lower normal lung volume and RLV than patients who survived (P<0.01). Multivariate analysis demonstrated that low RLV was the only independent predictor of death (odds ratio, 1.042; 95% confidence interval, 10.2-10.65). Furthermore, receiver operating characteristic curve analysis demonstrated that a RLV ≤64% significantly increased the risk of death (odds ratio, 4.8; 95% confidence interval, 1.9-11.7). CONCLUSION: Overall mortality of patients with COVID-19 may reach 21%. Univariate and multivariate analyses demonstrated that reduced RLV was the principal independent predictor of death. Furthermore, RLV ≤64% is associated with a 4-fold increase on the risk of death.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/mortality , Lung/diagnostic imaging , Lung/pathology , Tomography, X-Ray Computed/methods , COVID-19/pathology , Female , Humans , Male , Middle Aged , Prospective Studies , Residual Volume , Retrospective Studies , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL